[22] M. P. Girard and W. C. Koff, “Human Immunodeficiency Virus Vaccines,” in

Plotkin’s Vaccines Seventh Edition, 7th Ed., vol. 29, S. A. Plokin, O. Walter A. P.

A. Offit, and K. M. Edwards, Eds. Philadelphia: Elsevier, 2018, pp. 400–429.

[23] I. Voráčková, P. Ulbrich, W. E. Diehl, and T. Ruml, “Engineered retroviral virus-

like particles for receptor targeting,” Arch. Virol., vol. 159, no. 4, pp. 677–688,

2014, doi: 10.1007/s00705-013-1873-6

[24] S. J. Kaczmarczyk, K. Sitaraman, H. A. Young, S. H. Hughes, and D. K. Chatterjee,

“Protein delivery using engineered virus-like particles,” Proc. Natl. Acad. Sci., vol.

108, no. 41, pp. 16998–17003, Oct. 2011, doi: 10.1073/pnas.1101874108

[25] H. K. Ong, W. S. Tan, and K. L. Ho, “Virus like particles as a platform for cancer

vaccine development,” Peer J., vol. 2017, no. 11, pp. 1–31, 2017, doi: 10.7717/

peerj.4053

[26] A. Venereo-Sanchez et al., “Hemagglutinin and neuraminidase containing virus-

like particles produced in HEK-293 suspension culture: An effective influenza

vaccine candidate,” Vaccine, vol. 34, no. 29, pp. 3371–3380, 2016, doi: 10.1016/

j.vaccine.2016.04.089

[27] D. Fontana, E. Garay, L. Cervera, R. Kratje, C. Prieto, and F. Gòdia, “Chimeric

VLPs based on HIV-1 gag and a fusion rabies glycoprotein induce specific anti-

bodies against Rabies and foot-and-mouth disease Virus,” Vaccines, vol. 9, no. 3,

p. 251, Mar. 2021, doi: 10.3390/VACCINES9030251

[28] B. M. Giles and T. M. Ross, “A computationally optimized broadly reactive antigen

(COBRA) based H5N1 VLP vaccine elicits broadly reactive antibodies in mice and

ferrets,” Vaccine, vol. 29, no. 16, pp. 3043–3054, 2011, doi: 10.1016/j.vaccine.2011.

01.100

[29] D. M. Carter et al., “Design and Characterization of a Computationally Optimized

Broadly Reactive Hemagglutinin Vaccine for H1N1 Influenza Viruses,” J. Virol.,

vol. 90, no. 9, pp. 4720–4734, 2016, doi: 10.1128/JVI.03152-15

[30] A. J. Chua et al., “A novel platform for virus-like particle-display of flaviviral

envelope domain III: Induction of Dengue and West Nile virus neutralizing anti-

bodies,” Virol. J., vol. 10, no. 1, p. 129, 2013, doi: 10.1186/1743-422X-10-129

[31] P. Di Bonito et al., “Anti-tumor CD8 + T cell immunity elicited by HIV-1-based

virus-like particles incorporating HPV-16 E7 protein,” Virology, vol. 395, no. 1,

pp. 45–55, 2009, doi: 10.1016/j.virol.2009.09.012

[32] N. Osterrieder, R. Wagner, C. Brandmüller, P. Schmidt, H. Wolf, and O.-R.

Kaaden, “Protection against EHV-1 challenge infection in the murine model after

vaccination with various formulations of recombinant glycoprotein gp14 (gB),”

Virology, vol. 208, no. 2, pp. 500–510, Apr. 1995, doi: 10.1006/viro.1995.1181

[33] L. Garnier et al., “Incorporation of pseudorabies virus gD into human im-

munodeficiency virus type 1 Gag particles produced in baculovirus-infected cells.,” J.

Virol., vol. 69, no. 7, pp. 4060–4068, 1995, doi: 10.1128/jvi.69.7.4060-4068.1995

[34] X. Wu et al., “Targeting foreign proteins to human immunodeficiency virus par-

ticles via fusion with Vpr and Vpx, ”J Virol., vol. 69, no. 6, pp. 3389–3398, 1995.

[35] V. K. Deo, T. Kato, and E. Y. Park, “Chimeric virus-like particles made using GAG

and M1 capsid proteins providing dual drug delivery and vaccination platform,”

Mol. Pharm., vol. 12, no. 3, pp. 839–845, 2015, doi: 10.1021/mp500860x

[36] R. Cubas, S. Zhang, M. Li, C. Chen, and Q. Yao, “Chimeric Trop2 virus-like particles:

A potential immunotherapeutic approach against pancreatic cancer,” J. Immunother.,

vol. 34, no. 3, pp. 251–263, Apr. 2011, doi: 10.1097/CJI.0b013e318209ee72

[37] S. Zhang, L. Yong, D. Li, R. Cubas, C. Chen, and Q. Yao, “Mesothelin virus-like

particle immunization controls pancreatic cancer growth through CD8 + T cell

induction and reduction in the frequency of CD4 + foxp3 + ICOS 2 regulatory T

cells,” PLOS ONE, vol. 8, no. 7, 2013, doi: 10.1371/journal.pone.0068303

Recombinant vaccines: Gag-based VLPs

261